Аннотация по программе информатика 7 класс

Программа разработана на основе:

- -Федерального государственного общеобразовательного стандарта основного общего образования, утверждённого приказом Минобрнауки России от 17 декабря 2010 г. № 1897 « Об утверждении и введении в действие федерального государственного общеобразовательного стандарта основного общего образования»
- Рабочая программа учебного курса по информатике для 7 класса разработана на основе ФГОС второго поколения, примерной программы основного общего образования по информатике (базовый уровень) и авторской программы И.Г. Семакина, М.С. Цветковой (ФГОС программа для основной школы 7-9 классы И.Г. Семакин, М.С.Цветкова Москва БИНОМ.Лаборатория знаний 2014).
- основной образовательной программы МБОУ-СОШ №6 х.Комаров;
- ориентирована на учебник Информатика: 7кл./ И.Г. Семакин, М.С.Цветкова Москва БИНОМ. Лаборатория знаний 2017)

Планируемые результаты изучения учебного предмета

Представленная программа обеспечивает достижение личностных, метапредметных и предметных результатов

Личностные результаты:

- Формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- Развитие осознанного и ответственного отношения к собственным поступкам;
- Формирование коммуникативной компетентности в процессе образовательной, учебно-исследовательской, творческой и других видов деятельности.

Метапредметные результаты:

- Умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- Умение определять понятия, создавать обобщения, классифицировать, самостоятельно выбирать основания и критерии для классификации,

устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение и делать выводы;

- Умение создавать, применять и преобразовывать знаки и символы, схемы, графики, таблицы для решения учебных и познавательных задач;
- Смысловое чтение;
- Умение осознанно использовать речевые средства в соответствии с задачей коммуникации; владение устной и письменной речью;
- Умение применять поисковые системы учебных и познавательных задач;
- Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Предметные результаты:

- Умение использовать термины «информация», «наука», «связь», «сообщение», «данные», «входные данные», «процессы», «органы чувств», «кодирование», «программа», «формула», «история развития», «звуковое кодирование», «пространственная дискретизация», «волны», «рисуночное письмо»; «рисунок» понимание различий между употреблением этих терминов в обыденной речи и в информатике и т.д;
- Умение описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них; умение кодировать и декодировать тексты при известной кодовой таблице и т.д.;
- Умение использовать прикладные компьютерные программы;
- Умение выбора способа представления данных в зависимости от постановленной задачи.

Содержание учебного предмета

Введение в предмет

Предмет информатики. Роль информации в жизни людей. Содержание базового курса информатики.

1. Человек и информация.

Информация и ее виды. Восприятие информации человеком. Информационные процессы

Измерение информации. Единицы измерения информации.

2. Компьютер: устройство и программное обеспечение.

Начальные сведения об архитектуре компьютера. Принципы организации внутренней и внешней памяти компьютера. Двоичное представление данных

в памяти компьютера. Организация информации на внешних носителях, файлы. Персональный компьютер. Основные устройства и характеристики. Правила техники безопасности и эргономики при работе за компьютером. Виды программного обеспечения (ПО). Системное ПО. Операционные системы. Основные функции ОС. Файловая структура внешней памяти. Объектно-ориентированный пользовательский интерфейс.

3. Текстовая информация и компьютер.

Тексты в компьютерной памяти: кодирование символов, текстовые файлы. Работа с внешними носителями и принтерами при сохранении и печати текстовых документов.

Текстовые редакторы и текстовые процессоры, назначение, возможности, принципы работы с ними. Интеллектуальные системы работы с текстом (распознавание текста, компьютерные словари и системы перевода)

4. Графическая информация и компьютер.

Компьютерная графика: области применения, технические средства. Принципы кодирования изображения; понятие о дискретизации изображения. Растровая и векторная графика.

Графические редакторы и методы работы с ними.

5. Мультимедиа и компьютерные презентации.

Что такое мультимедиа; области применения. Представление звука в памяти компьютера; понятие о дискретизации звука. Технические средства мультимедиа. Компьютерные презентации.

Рабочая программа состоит из следующих разделов: пояснительная записка, в которой отражены цели, задачи, актуальность изучения курса, место предмета, содержание предмета, результаты освоения предмета, календарно-тематическое планирование.

Аннотация по программе информатика 8 класс

Программа разработана на основе:

- -Федерального государственного общеобразовательного стандарта основного общего образования, утверждённого приказом Минобрнауки России от 17 декабря 2010 г. № 1897 « Об утверждении и введении в действие федерального государственного общеобразовательного стандарта основного общего образования»
- Рабочая программа учебного курса по информатике для 8 класса разработана на основе ФГОС второго поколения, примерной программы основного общего

образования по информатике (базовый уровень) и авторской программы И.Г. Семакина, М.С. Цветковой (ФГОС программа для основной школы 7-9 классы И.Г. Семакин, М.С.Цветкова Москва БИНОМ. Лаборатория знаний 2014).

- основной образовательной программы МБОУ-СОШ №6 х.Комаров;
- ориентирована на учебник Информатика: 8кл./ И.Г. Семакин, М.С.Цветкова Москва БИНОМ. Лаборатория знаний 2017)

Планируемые результаты изучения учебного предмета

Представленная программа обеспечивает достижение личностных, метапредметных и предметных результатов

Личностные результаты:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
- понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации;
- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое

- рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- ИКТ-компетентность широкий спектр умений И навыков использования средств информационных И коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиасообщений; коммуникация и взаимодействие; сошиальное поиск И организация хранения информации; анализ информации).

Предметные результаты:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- алгоритмического необходимого • развитие мышления, ДЛЯ профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях операциях; знакомство одним ИЗ языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Содержание учебного предмета

1. Передача информации в компьютерных сетях

Компьютерные сети: виды, структура, принципы функционирования, технические устройства. Скорость передачи данных.

Информационные услуги компьютерных сетей: электронная почта, телеконференции, файловые архивы и пр. Интернет, WWW – «Всемирная паутина». Поисковые системы Интернет. Архивирование и разархивирование файлов.

<u>Практика на компьютере</u>: работа в локальной сети компьютерного класса в режиме обмена файлами; работа в Интернете (или в учебной имитирующей системе) с почтовой программой, с браузером WWW, с поисковыми программами; работа с архиваторами.

Знакомство с энциклопедиями и справочниками учебного содержания в Интернете (с использованием отечественных учебных порталов). Копирование информационных объектов из Интернета (файлов, документов).

Создание простой Web – страницы с помощью текстового процессора. Учащиеся должны знать:

- что такое компьютерная сеть; в чем различие между локальными и глобальными сетями;
- назначение основных технических и программных средств функционирования сетей: каналов связи, модемов, серверов, клиентов, протоколов;
- назначение основных видов услуг глобальных сетей: электронной почты, телеконференций, файловых архивов и др.;
- > что такое Интернет; какие возможности предоставляет пользователю «Всемирная паутина» WWW.

Учащиеся должны уметь:

- осуществлять обмен информацией с файл-сервером локальной сети или с рабочими станциями одноранговой сети;
- осуществлять прием/передачу электронной почты с помощью почтовой клиент - программы;
- ▶ осуществлять просмотр Web страниц с помощью браузера;
- **>** осуществлять поиск информации в Интернете, используя поисковые системы;
- **р**аботать с одной из программ-архиваторов.

2. Информационное моделирование

Понятие модели; модели натурные и информационные. Назначение и свойства моделей.

Виды информационных моделей: вербальные, графические, математические, имитационные. Табличная организация информации. Области применения компьютерного информационного моделирования.

<u>Практика на компьютере</u>: работа с демонстрационными примерами компьютерных информационных моделей.

Учащиеся должны знать:

- что такое модель; в чем разница между натурной и информационной моделями;
- жакие существуют формы представления информационных моделей (графические, табличные, вербальные, математические).

Учащиеся должны уметь:

- > приводить примеры натурных и информационных моделей;
- > ориентироваться в таблично организованной информации;
- > описывать объект (процесс) в табличной форме для простых случаев.

3. Хранение и обработка информации в базах данных

Понятие базы данных (БД), информационной системы. Основные понятия БД: запись, поле, типы полей, ключ. Системы управления БД и принципы работы с ними. Просмотр и редактирование БД.

Проектирование и создание однотабличной БД.

Условия поиска информации, простые и сложные логические выражения. Логические операции. Поиск, удаление и сортировка записей.

<u>Практика на компьютере</u>: работа с готовой базой данных: открытие, просмотр, простейшие приемы поиска и сортировки; формирование запросов на поиск с простыми условиями поиска; логические величины, операции, выражения; формирование запросов на поиск с составными условиями поиска; сортировка таблицы по одному и нескольким ключам; создание однотабличной базы данных; ввод, удаление и добавление записей.

Знакомство с одной из доступных геоинформационных систем (например, картой города в Интернете).

Учащиеся должны знать:

- > что такое база данных, СУБД, информационная система;
- что такое реляционная база данных, ее элементы (записи, поля, ключи);
 типы и форматы полей;
- > структуру команд поиска и сортировки информации в базах данных;
- > что такое логическая величина, логическое выражение;
- Учащиеся должны уметь:
- > открывать готовую БД в одной из СУБД реляционного типа;
- > организовывать поиск информации в БД;
- > редактировать содержимое полей БД;
- > сортировать записи в БД по ключу;
- > добавлять и удалять записи в БД;
- > создавать и заполнять однотабличную БД в среде СУБД.

4. Табличные вычисления на компьютере

Двоичная система счисления. Представление числа в памяти компьютера.

Табличные расчеты и электронные таблицы. Структура электронной таблицы, типы данных: текст, число, формула. Адресация относительная и абсолютная. Встроенные функции. Методы работы с электронными таблицами.

Построение графиков и диаграмм с помощью электронных таблиц.

Математическое моделирование и решение задач с помощью электронных таблиц.

<u>Практика на компьютере</u>: работа с готовой электронной таблицей: просмотр, ввод исходных данных, изменение формул; создание электронной таблицы для решения расчетной задачи; решение задач с использованием условной и логических функций; манипулирование фрагментами ЭТ (удаление и вставка строк, сортировка строк). Использование встроенных

графических средств.

Численный эксперимент с данной информационной моделью в среде электронной таблицы.

Учащиеся должны знать:

- > что такое электронная таблица и табличный процессор;
- ▶ основные информационные единицы электронной таблицы: ячейки, строки, столбцы, блоки и способы их идентификации;
- **>** какие типы данных заносятся в электронную таблицу; как табличный процессор работает с формулами;
- **>** основные функции (математические, статистические), используемые при записи формул в ЭТ;
- **у** графические возможности табличного процессора. Учащиеся должны уметь:
- открывать готовую электронную таблицу в одном из табличных процессоров;
- редактировать содержимое ячеек; осуществлять расчеты по готовой электронной таблице;
- **>** выполнять основные операции манипулирования с фрагментами ЭТ: копирование, удаление, вставку, сортировку;
- получать диаграммы с помощью графических средств табличногопроцессора;
- > создавать электронную таблицу для несложных расчетов.

Рабочая программа состоит из следующих разделов: пояснительная записка, в которой отражены цели, задачи, актуальность изучения курса, место предмета, содержание предмета, результаты освоения предмета, календарно-тематическое планирование.

Аннотация по программе информатика 9 класс

Программа разработана на основе:

- -Федерального государственного общеобразовательного стандарта основного общего образования, утверждённого приказом Минобрнауки России от 17 декабря 2010 г. № 1897 « Об утверждении и введении в действие федерального государственного общеобразовательного стандарта основного общего образования»
- Рабочая программа учебного курса по информатике для 9 класса разработана на основе ФГОС второго поколения, примерной программы основного общего образования по информатике (базовый уровень) и авторской программы И.Г.

Семакина, М.С. Цветковой (ФГОС программа для основной школы 7-9 классы И.Г. Семакин, М.С.Цветкова Москва БИНОМ.Лаборатория знаний 2014).

- основной образовательной программы МБОУ-СОШ №6 х.Комаров;
- ориентирована на учебник Информатика: 9кл./ И.Г. Семакин, М.С.Цветкова Москва БИНОМ. Лаборатория знаний 2017)

Планируемые результаты изучения учебного предмета

Представленная программа обеспечивает достижение личностных, метапредметных и предметных результатов

личностные результаты:

1. Формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.

Тема «Предыстория информатики»: раскрывается история открытий и изобретений средств и методов хранения, передачи и обработки информации до создания ЭВМ.

Тема «История ЭВМ», «История программного обеспечения и ИКТ».

Дополнение «История языков программирования» посвящены современному этапу развития информатики и ее перспективам.

- 2. Формирование коммуникативной компетентности в в общении и сотрудничестве со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности.
- 3. Формирование ценности здорового и безопасного образа жизни.

метапредметныерезультаты:

- 1. Умение самостоятельно планировать пути достижения цели, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.
 - В курсе информатики данная компетенция обеспечивается алгоритмической линией, которая реализована в учебнике для 9 класса в главе 1 «Управление и алгоритмы» и главе 2 «Введение в программирование».
- 2. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения

Раздел 1 «Управление и алгоритмы», раздел 2 «Введение в программирование»

3. Умения определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы

Раздел «Введение в программирование»

предметныерезультаты:

- освоение основных понятий и методов информатики;
- освоение основных конструкций процедурного языка программирования;
- освоение методики решения задач по составлению типового набора учебных алгоритмов: использование основных алгоритмических конструкций для построения алгоритма, проверка его правильности путём тестирования и/или анализа хода выполнения, нахождение и исправление типовых ошибок с использованием современных программных средств;
- умение анализировать систему команд формального исполнителя для определения возможности или невозможности решения с их помощью задач заданного класса;
- оценивание числовых параметров информационных процессов (объёма памяти, необходимого для хранения информации, скорости обработки и передачи информации и пр.);
- вычисление логических выражений, записанных на изучаемом языке программирования; построение таблиц истинности и упрощение сложных высказываний с помощью законов алгебры логики;

Содержание учебного предмета

1. Управление и алгоритмы

Кибернетика. Кибернетическая модель управления.

Понятие алгоритма и его свойства. Исполнитель алгоритмов: назначение, среда исполнителя система команд исполнителя, режимы работы.

Языки для записи алгоритмов (язык блок-схем, учебный алгоритмический язык). Линейные, ветвящиеся и циклические алгоритмы. Структурная методика алгоритмизации. Вспомогательные алгоритмы. Метод пошаговой детализации.

Компьютерный практикум

- Практическая работа №1. Работа с учебным исполнителем:
 построение линейных алгоритмов.
- Практическая работа №2. Работа с учебным исполнителем алгоритмов: использование вспомогательных алгоритмов.
- Практическая работа №3.Работа с учебным исполнителем алгоритмов: использование разветвляющихся алгоритмов.
- Практическая работа №4.Работа с учебным исполнителем алгоритмов: использование циклических алгоритмов.

2. Введение в программирование

Алгоритмы работы с величинами: константы, переменные, понятие типов

данных, ввод и вывод данных.

Языки программирования высокого уровня (ЯПВУ), их классификация. Структура программы на языке Паскаль. Представление данных в программе. Правила записи основных операторов: присваивания, ввода, вывода, ветвления, циклов. Структурный тип данных — массив. Способы описания и обработки массивов.

Этапы решения задачи с использованием программирования: постановка, формализация, алгоритмизация, кодирование, отладка, тестирование.

Компьютерный практикум

- Практическая работа №5. Программирование на Паскале линейных алгоритмов.
- Практическая работа №6. Разработка программы с использованием оператора ветвления и логических операций.
- Практическая работа №7.Разработка программ с использованием цикла с предусловием.
- Практическая работа №8.Разработка программ с использованием цикла с постусловием.
- Практическая работа №9.Разработка программ обработки одномерных массивов.
- Практическая работа №10.Разработка программы поиска числа в случайно сформированном массиве.
- Практическая работа №11. Составление программы поиска минимального и максимального элементов.
- Практическая работа №12. Составление программы сортировки массива

3. Информационные технологии и общество

Предыстория информационных технологий. История ЭВМ и ИКТ. Понятие информационных ресурсов. Информационные ресурсы современного общества. Понятие об информационном обществе. Проблемы безопасности информации, этические и правовые нормы в информационной сфере.

Итоговое тестирование по курсу 9 класса (задания из ОГЭ по информатике).

Повторение по темам курса 9 класса

Рабочая программа состоит из следующих разделов: пояснительная записка, в которой отражены цели, задачи, актуальность изучения курса, место предмета, содержание предмета, результаты освоения предмета, календарно-тематическое планирование.

Аннотация по программе информатика 10 класс

Программа разработана на основе:

- Федерального Государственного образовательного стандарта, утвержденный Приказом Минобразования РФ от 17.05.2012 №413; авторской программы общеобразовательного курса (базового уровня) для 10-11 классов «Информатика и информационные технологии» Семакина И.Г.
- основной образовательной программы МБОУ-СОШ №6 х.Комаров;
- ориентированана учебник Информатика: 10 кл./ И.Г. Семакин, М.С.Цветкова Москва БИНОМ. Лаборатория знаний 2017)

Планируемые результаты изучения учебного предмета

Цели изучения общеобразовательного предмета «Информатика» направлены на достижение образовательных результатов, которые структурированы по ключевым задачам общего образования, отражающим индивидуальные, общественные и государственные потребности. Результаты включают в себя личностные, метапредметные и предметные. Личностные и метапредметные результаты являются едиными для базового и профильного уровней.

Личностные:

- сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
- толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;
- навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

- эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;
- принятие и реализацию ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;
- **бережное, ответственное и компетентное отношение** к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь;
- осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных общественных, государственных, общенациональных проблем;
- сформированность экологического мышления, понимания влияния социально-экономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности;
- формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- развитие осознанного и ответственного отношения к собственным поступкам;
- формирование коммуникативной компетентности в процессе образовательной, учебно-исследовательской, творческой и других видов деятельности.
- владение навыками анализа и критичной оценки получаемой информации с позиций ее свойств, практической и личной значимости, развитие чувства личной ответственности за качество окружающей информационной среды;
- **оценка** окружающей информационной среды и формулирование предложений по ее улучшению;
- **организация** индивидуальной информационной среды, в том числе с помощью типовых программных средств;

• **использование** обучающих, тестирующих программы и программытренажеры для повышения своего образовательного уровня и подготовке к продолжению обучения.

Метапредметные:

- умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректироватьдеятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационнопознавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- умение использовать средства информационных И технологий (далее коммуникационных решении когнитивных, коммуникативных И организационных задач соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.
- **владение** основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и

критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

- умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- смысловое чтение;
- **умение** осознанно использовать речевые средства в соответствии с задачей коммуникации; владение устной и письменной речью;
- формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).
- **владение** основными общеучебными умениями информационного характера: анализа ситуации, планирования деятельности, обобщения и сравнения данных и др.;
- **получение** опыта использования методов и средств информатики: моделирования; формализации структурирования информации; компьютерного эксперимента при исследовании различных объектов, явлений и процессов;
- умение создавать и поддерживать индивидуальную информационную среду, обеспечивать защиту значимой информации и личную информационную безопасность;
- владение навыками работы с основными, широко распространенными средствами информационных и коммуникационных технологий;
- умение осуществлять совместную информационную деятельность, в частности при выполнении проекта.

Предметные:

В сфере познавательной деятельности:

- освоение основных понятий и методов информатики;
- умение интерпретировать сообщение с позиций их смысла, синтаксиса, ценности;
- умение выделять информационные системы и модели в естественнонаучной, социальной и технической областях;

- умение анализировать информационные модели с точки зрения их адекватности объекту и целям моделирования, исследовать модели с целью получения новой информации об объекте;
- владеть навыками качественной и количественной характеристики информационной модели;
- приобретения навыков оценки основных мировоззренческих моделей;
- умение проводить компьютерный эксперимент для изучения построенных моделей и интерпретировать их результаты;
- умение определять цели системного анализа;
- умение анализировать информационные системы разной природы, выделять в них системообразующие и системоразрушающие факторы;
- умение выделять воздействие внешней среды на систему и анализировать реакцию системы на воздействие извне;
- умение планировать действия, необходимые для достижения заданной цели;
- умение измерять количество информации разными методами;
- умение выбирать показатели и формировать критерии оценки, осуществлять оценку моделей;
- умение строить алгоритм решения поставленной задачи оценивать его сложность и эффективность;
- умение приводить примеры алгоритмически неразрешимых проблем;
- умение анализировать разные способы записи алгоритмов;
- умение реализовывать алгоритмы с помощью программ и программных средств;
- умение ставить вычислительные эксперименты при использовании информационных моделей в процессе решения задач;
- умение сопоставлять математические модели задачи и их компьютерные аналогии.

В сфере ценностно-ориентационной деятельности:

• приобретение навыков информационной деятельности, осуществляемые в соответствии с правами и ответственностью гражданина;

- развитие уважения к правам других людей и умение отстаивать свои права в вопросах информационной безопасности личности;
- готовность к работе о сохранении и преумножении общественных информационных ресурсов; готовность и способность нести личную ответственность за достоверность распространяемой информации;
- умение оценивать информацию, умение отличать корректную аргументацию от некорректной;
- осознание проблем, возникающих при развитии информационной цивилизации, и возможных путей их разрешения;
- приобретение опыта выявления социальных информационных технологий со скрытыми целями.;
- осознание того, что информация есть стратегический ресурс государства;
- умение применять информационный подход к оценке исторических событий;
- умение анализировать причины и последствия основных информационных революций;
- умение оценивать влияние уровня развития информационной культуры на социально-экономическое развитие общества;
- осознание того, что право на информацию, есть необходимое условие информационной свободы личности;
- осознание глобальной опасности технократизма;
- приобретение опыта анализа правовых документов, посвящённых защите информационных интересов личности и общества;
- умение выявлять причины информационного неравенства и находить способы его преодоления;
- знакомство с методами ведения информационных войн.

В сфере коммуникативной деятельности:

- осознание коммуникации как информационного процесса, роли языков, а том числе формальных, в организации коммуникативных процессов;
- приобретение опыта планирования учебного сотрудничества с учителем и сверстниками;

- осознание основных психологических особенностей восприятия информации человеком;
- овладение навыками использования средств ИКТ при подготовке своих выступлений с учётом передаваемого содержания;
- умение контролировать, корректировать, оценивать действия партнёра по коммуникативной деятельности;
- использование явления информационного резонанса в процессе организации коммуникативной деятельности;
- соблюдение норм этикета, российских и международных законов припередачи информации по телекоммуникационным каналам

В сфере трудовой деятельности:

- умение выделять общее и особенное в материальных и информационных технологиях, выявлять основные этапы, операции и элементарные действия в изучаемых технологиях;
- умение оценивать класс задач, которые могут быть решены с использованием конкретного технического устройства в зависимости от его основных характеристик;
- умение использовать информационное воздействие как метод управления;
- умение выявлять каналы прямой и обратной связи;
- использование стереотипов при решении типовых задач;
- умение строить алгоритмы вычислительных и аналитических задачи реализовывать их с использованием ПК и прикладных программ;
- использование табличных процессоров для исследования моделей;
- получение опыта принятия управленческих решений на основе результатов компьютерных экспериментов.

В сфере эстетической деятельности:

- знакомство с эстетически значимыми объектами, созданными с помощью ИКТ, и средствами их создания;
- приобретение опыта создания эстетически значимых объектов с помощью средств ИКТ;
- приобретение опыта в области компьютерного дизайна;

• получение опыта сравнения художественных произведений с помощью компьютера и традиционных средств.

В сфере охраны здоровья:

- понимание особенности работы со средствами информатизации, их влияние на здоровье человека, владение профилактическими мерами при работе с этими средствами;
- соблюдении требований безопасности, гигиены и эргономики в работе с компьютером;
- умение преодолевать негативное воздействие средств информационных технологий на психику человека.

Содержание учебного предмета

1. Информация.

Три философские концепции информации. Понятие информации в нейрофизиологии, генетике, кибернетике, частных науках: теории информации. Что такое язык представления информации; какие бывают языки. Понятия «кодирование» и «декодирование» информации. Примеры технических систем кодирования информации: азбука Морзе, телеграфный код Бодо. Понятия «шифрование», «дешифрование». Сущность объемного (алфавитного) подхода к измерению информации. Определение бита с алфавитнойт.з. Связь между размером алфавита и информационным весом символа (в приближении равновероятности символов). Связь между единицами измерения информации: бит, байт, Кб, Мб, Гб. Сущность содержательного (вероятностного) подхода к измерению информации. Определение бита с позиции содержания сообщения.

<u>Практика на компьютере</u>: решение задач на измерение информации заключенной в тексте, с алфавитной т.з. (в приближении равной вероятности символов), а также заключенной в сообщении, используя содержательный подход (в равновероятном приближении), выполнение пересчета количества информации в разные единицы.

2. Информационные процессы

Основные понятия системологии: система, структура, системный эффект, подсистема. Основные свойства систем: целесообразность, целостность. «Системный подход» в науке и практике. Отличие естественных и искусственных системы. Материальные и информационные типы связей действующие в системах. Роль информационных процессов в системах. Состав и структура систем управления. История развития носителей информации. Современные (цифровые, компьютерные) типы носителей

информации и их основные характеристики. Модель К. Шеннона передачи информации по техническим каналам связи. Основные характеристики каналов связи: скорость передачи, пропускная способность. Понятие «шум» и способы защиты от шума.

Основные типы задач обработки информации. Понятие исполнителя обработки информации. Понятие алгоритма обработки информации. Что такое «алгоритмические машины» в теории алгоритмов. Определение и свойства алгоритма управления алгоритмической машиной. Устройство и система команд алгоритмической машины Поста.

<u>Практика на компьютере:</u> автоматическая обработка данных с помощью алгоритмической машины Поста.

3. Программирование обработки данных

Атрибуты поиска: «набор данных», «ключ поиска» и «критерий поиска». Понятие «структура данных»; виды структур. Алгоритм последовательного поиска. Алгоритм поиска половинным делением. Блочный Осуществление поиска в иерархической структуре данных. Какая информация требует защиты. Виды угроз для числовой информации. Физические способы защиты информации. Программные средства защиты информации. Что такое криптография. Понятие цифровой подписи и цифрового сертификата. Определение модели. Информационная модель. Этапы информационного моделирования на компьютере. Граф, дерево, сеть. Структура таблицы; основные типы табличных моделей. Многотабличная модель данных и каким образом в ней связываются таблицы. Понятие алгоритмической модели. Способы описания алгоритмов: блок-схемы, учебный алгоритмический язык. Трассировка алгоритма.

<u>Практика на компьютере:</u> программное управление алгоритмическим исполнителем.

Рабочая программа состоит из следующих разделов: пояснительная записка, в которой отражены цели, задачи, актуальность изучения курса, место предмета, содержание предмета, результаты освоения предмета, календарно-тематическое планирование.

Аннотация по программе информатика 11 класс

Программа разработана на основе:

- Федеральный компонент государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего

образования", утвержденный приказом Минобразования Российской Федерации от 5 марта 2004 г. N 1089

- авторской программы общеобразовательного курса (базового уровня) для 10-11 классов «Информатика и информационные технологии» Семакина И.Г.
- основной образовательной программы МБОУ-СОШ №6 х.Комаров;
- ориентирована на учебник Информатика: 11 кл./ И.Г. Семакин, М.С.Цветкова Москва БИНОМ. Лаборатория знаний 2017)

Планируемые результаты изучения учебного предмета Информационные системы и базы данных

Учащиеся должны знать:

- основные понятия системологии: система, структура, системный эффект, подсистема
- основные свойства систем
- что такое «системный подход» в науке и практике
- модели систем: модель черного ящика, состава, структурная модель
- использование графов для описания структур систем
- что такое база данных (БД)
- основные понятия реляционных БД: запись, поле, тип поля, главный ключ
- определение и назначение СУБД
- основы организации многотабличной БД
- что такое схема БД, целостность данных
- этапы создания многотабличной БД с помощью реляционной СУБД
- структуру команды запроса на выборку данных из БД
- организацию запроса на выборку в многотабличной БД
- основные логические операции, используемые в запросах
- правила представления условия выборки на языке запросов и в конструкторе запросов

Учащиеся должны уметь:

- приводить примеры систем (в быту, в природе, в науке и пр.)
- анализировать состав и структуру систем
- различать связи материальные и информационные.
- создавать многотабличную БД средствами конкретной СУБД
- реализовывать простые запросы на выборку данных в конструкторе запросов
- реализовывать запросы со сложными условиями выборки

Интернет

Тема « Организация и услуги Интернет».

Учащиеся должны знать:

- назначение коммуникационных служб Интернета

- назначение информационных служб Интернета
- что такое прикладные протоколы
- основные понятия WWW: web-страница, web-сервер, web-сайт, web-браузер, HTTP-протокол, URL-адрес
- что такое поисковый каталог: организация, назначение
- что такое поисковый указатель: организация, назначение
- какие существуют средства для создания web-страниц
- в чем состоит проектирование web-сайта
- что значит опубликовать web-сайт

Учащиеся должны уметь:

- работать с электронной почтой
- извлекать данные из файловых архивов
- осуществлять поиск информации в Интернете с помощью поисковых каталогов и указателей.
- создать несложный web-сайт с помощью редактора сайтов

Информационное моделирование

Учащиеся должны знать:

- понятие модели
- понятие информационной модели
- этапы построения компьютерной информационной модели
- понятия: величина, имя величины, тип величины, значение величины
- что такое математическая модель
- формы представления зависимостей между величинами
- для решения каких практических задач используется статистика;
- что такое регрессионная модель
- как происходит прогнозирование по регрессионной модели
- что такое корреляционная зависимость
- что такое коэффициент корреляции
- какие существуют возможности у табличного процессора для выполнения корреляционного анализа
- что такое оптимальное планирование
- что такое ресурсы; как в модели описывается ограниченность ресурсов
- что такое стратегическая цель планирования; какие условия для нее могут быть поставлены
- в чем состоит задача линейного программирования для нахождения оптимального плана
- какие существуют возможности у табличного процессора для решения задачи линейного программирования

Учащиеся должны уметь

- с помощью электронных таблиц получать табличную и графическую форму зависимостей между величинами
- используя табличный процессор строить регрессионные модели заданных типов
- осуществлять прогнозирование (восстановление значения и экстраполяцию) по регрессионной модели
- вычислять коэффициент корреляционной зависимости между величинами с помощью табличного процессора (функция КОРРЕЛ в MSExcel)
- решать задачу оптимального планирования (линейного программирования) с небольшим количеством плановых показателей с помощью табличного процессора (Поиск решения в MSExcel)

Социальная информатика

Учащиеся должны знать:

- что такое информационные ресурсы общества
- из чего складывается рынок информационных ресурсов
- что относится к информационным услугам
- в чем состоят основные черты информационного общества
- причины информационного кризиса и пути его преодоления
- какие изменения в быту, в сфере образования будут происходить с формированием информационного общества

Учащиеся должны уметь:

- основные законодательные акты в информационной сфере
- суть Доктрины информационной безопасности Российской Федерации
- соблюдать основные правовые и этические нормы в информационной сфере деятельности

Содержание учебного предмета

Информационные системы и базы данных (11 ч).

Что такое система. Модели системы. Системный анализ. Информационные системы. Базы данных — основа информационной системы. Проектирование и создание многотабличных баз данных. Запросы как приложения информационной системы. Логические условия выбора.

Интернет (11 ч).

Организация глобальных сетей. Интернет как глобальная информационная система. WorldWideWeb — Всемирная паутина. Инструменты для разработки web-сайтов. Создание сайтов. Создание таблиц и списков на web-странице.

Информационное моделирование (9 ч).

Компьютерное информационное моделирование. Моделирование зависимостей между величинами. Модели статистического прогнозирования. Модели корреляционных зависимостей. Модели оптимального планирования. Социальная информатика (4 ч).

Информационные ресурсы. Информационное общество. Правовое регулирование в информационной сфере. Проблемы информационной безопасности.

Рабочая программа состоит из следующих разделов: пояснительная записка, в которой отражены цели, задачи, актуальность изучения курса, место предмета, содержание предмета, результаты освоения предмета, календарно-тематическое планирование.